Smoothness Conditions on Measures Using Wallman Spaces
نویسنده
چکیده
In this paper, X denotes an arbitrary nonempty set, a lattice of subsets of X with ∅, X∈ , A( ) is the algebra generated by and M( ) is the set of nontrivial, finite, and finitely additive measures on A( ), and MR( ) is the set of elements of M( ) which are -regular. It is well known that any μ ∈M( ) induces a finitely additive measure μ̄ on an associated Wallman space. Whenever μ ∈MR( ), μ̄ is countably additive. We consider the general problem of given μ ∈ M( ), how do properties of μ̄ imply smoothness properties of μ? For instance, what conditions on μ̄ are necessary and sufficient for μ to be σ -smooth on , or strongly σ -smooth on , or countably additive? We consider in discussing these questions either of two associated Wallman spaces.
منابع مشابه
Induced Measures on Wallman Spaces
Let X be an abstract set and .t; a lattice of subsets ofX. To each lattice-regular measure we associate two induced measures and on suitable lattices of the Wallman space Is(L) and another measure IX’ on the space I,(L). We will investigate the reflection of smoothness properties of IX onto t, and Ix’ and try to set some new criterion for repleteness and measure repleteness.
متن کاملOn Measure Repleteness and Support for Lattice Regular Measures 707
The present paper is mainly concerned with establishing conditions which .assure that all lattice regular measures have additional smoothness properties or that simply all two-valued such measures have such properties and are therefore Dirac measures. These conditions are expressed in terms of the general Wallman space. The general results are then applied to specific topological lattices, yiel...
متن کامل-smoothness Criteria for Lattice Measures
Let X be an abstract set and L a lattice of subsets of X such that ;; X 2 L. In this paper we extend smoothness characterizations of L regular measures 2 MR(L) to the general case of 2 M (L), by considering different outer measures associated with and the induced measure on a Wallman space.
متن کاملNormal Characterizations of Lattices
Let X be an arbitrary nonempty set and a lattice of subsets of X such that ∅, X ∈ . Let ( ) denote the algebra generated by and I( ) denote those nontrivial, zero-one valued, finitely additive measures on ( ). In this paper, we discuss some of the normal characterizations of lattices in terms of the associated lattice regular measures, filters and outer measures. We consider the interplay betwe...
متن کاملOn Certain Wallman Spaces
Several generalized Wallman type spaces are considered as well as various lattices of subsets therein. In particular, regularity of these lattices and consequences are investigated. Also considered are necessary and sufficient conditions for these lattices to be Lindel6f as well as replete, prime complete, and fully replete.
متن کامل